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In this article forced vibrations of a two-mass dynamical system with collisions are in- 

vestigated. The simplest periodic motion of the system under consideration has been studied 

previously in a number of papers [l to 3]. It has been establiahed that, in a fairly narrow 

range of variation of the parameters, collisions lead to a considerable decrease in the 

vibrations. However, similar nonlinear systems exhibit various types of forced vibrations 

[4] which can occnr in other ranges of valnes of the parameters and which do not exclude 

the appearance of significantly different behavior of the eystsm. Therefore, tbe investiga- 

tion of the effect of changes of the parameters on the character of the motion is of some 

interest. 

The present problem is solved in this paper by reducing the equations of ions of 

motion to certain point transformations of four-dimensional surfaces, and solving these 

on the computer. Since by its very nature a digital computer is, generally speaking, well 

adapted to carrying out point transformations regardless of the character of the non- 

Ifnearities, its use seems to be more effective than solving the system under study with 

an analogne machine [s]. 

As a result of the study of the behavior of the phase trajectories (whose structure may 

become more and more complex as the time of solution increases), a region of values of the 

parameters is singled out, for which sharply defined resonances occur. Therefore, under 

some conditions, damping by impact (acceleration damping) can Iead to a pronounced in- 

crease in the vibrations of the system. 

1. Equations of motion of the system. The model which is used for the investigation 

is shown in Fig. 1. Mass M on an elastic support is acted upon by the force F cos Qt. The 

motion of the second mass m is limited by two stops. The interaction of the masses takes 

place only at the instant of impact and when they move together as a single mass. Under the 

usual assumptions for this type of problem, the equations of motion are written as follows. 

For independent motions of the two masses in a time interval between collisions, 
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The relations between the velocities of the masses before aud after impact are 

(A1 -1. If&) E” == (.W - n1.R) E’ f- m (1 3-R) 9’ 

(lW -i_ nL) ‘1” zzz iM (1 -1-H) 5’ -;-(m-AfR)tl‘, 1’1 -E;I ==u 
(1.2) 

The motion when the masses move 

t--AZ 

FIG. 1 

together after a perfectly inelastic im- 

pact or after an impact at aero relative 

velocity, provided that at the instant 

of impact the inequality 

(5” - 11”NE - ‘1) > 0 

is satisfied, is described by 

(M + m) 5” -t kg = F cos 54-B (1.3) 

E”fE-qrlf>o* 19 -5 ]=I) 

The position of the mass M which corresponds to the undeformed state of the spring k 

is taken as the origin t= 0. The origin 7 = 0 corresponds to the position of the mass m, 

where for r$= 0 the clearances between the mass m and the two stops are both equal to D. 

It is assumed that the coefficient of restitution Ii for the impact can vary from zero to one. 

The int~duction of the dimensionless variables 

x- Ek,JP’, zt=(rl--F)k/F, z = t vk / M (1.4) 

permits us to write the equations (1.1) to (1.3) in the simpler form 

x” + x = cosc0t, y” + 5” = 0, lu I<d 
(1.5) 

tJ/” 3 - &I*, x’# 111: %‘+ P :‘Z$) Y’, 
lyl =d (1.6) 

(1+p)s”+x=cosoz, 2” Y < 0, Ii/]-d (1.7) 

The dimensionless paremeters of the system, ~1, d, and o are expressed in terms of 

the original parameters by the relations 

Ii? =: I)!, / IV, dr=Dk/F, 0=52 jiM/k (1.8) 

The motion of the system (1.5) to (1.7) takes place in a five-dimensional phase space* 

5, 5’9 Y3 Y'r TC whose structure depends on four parameters /A, d, o, and R. 

2. Cloesification of the point transformations. The region of motion of the representa- 

tive point iu phase space is bounded by the surfaces where collisions of the masses occur, 

y = + d and y = - d. It is therefore expedient f4] in the study of the solutions of the system 

(1.5) to (1.7) to investigate the point transformations of these surfaces. Each phase tra- 

jectory can be considered as consisting of parts which are determined by Equations (1.5), 

(1.61, or (1.7). The collisions described by Equation (1.6) refer to the ends of the parts of 

a trajectory. 

Equations (1.5) and (1.6) define four possible point tr~sfo~ations T+_ and T_, 

for wbich&te original and the transformed points are located on different surfaces 

y = + d and y = - d, and another two transformations T ++ and T- the original and 

* More correctly a state space. (Translator’s note) 



transformed points of which are located on the same surface. 

Equation (1.7) defines two possible point transformations. The transformation S,, 

corresponds to common motion of the masses on the surface y = + d, and S __ corresponds 

to common motion on the surface y = - d. 

The introduction of the six point transformations which have been enumerated permits 

consideration of any motion of the system under study as the result of a sequence of ap- 

plications of the transformations. In this connection, the first index of each successive 

transformation must coincide with the second index of the preceding transformation. Thus, 

for example, after the transformation T_+, the transformations T+_, T++. or S++ may be 

applied; after the transformation S --I the transformations T_+ or T__, etc. 

We shall denote the initial point of a transformation by MO {so, ze*, yo, r/o*, ro] and 

the final point Mt (51, EL’, it, I/,‘, trf . Ry solving Equation (1.5) and assuming that at 

the instant of time 71 s collision (1.6) takes place, we obtain the following transformation 

of T-type in general form: 

.r, = (to’ + oa sin mo) sin (T 1 - To) + (IO - r cosoz,) COS (x.1 - To) + z cos WC1 

cc** = * [(zit’ + an sin mO) cos (x1 - TO) - (ZO -a cm3 wc0) sin (al - To) - 
/ 

(2.1) 

(~-PR)Y~‘TR (~+I”)(z~‘-a’ -y,,‘) 

where u = (I - o’)-’ and the value 7% > ‘& and is the smallest root of the equation 

I YI &d I = d (2.21 

/ T++ / T+- j T-+ 1 T-- 

The equations for each of the fonr transformationa 

of T-type are obtained from the general equations (2.1) 

and (2.2) by substituting the epeciffc values of yo and 

iz j $ 1 _i 1 -2 / 12 

yI into them in accordance with the table gfven to the 

left. 

We note that the equations for the transformation8 

T +_ and r_+ permit determination of the motion of 

the system even in the case where the point Mu is located between the surfaces represent- 

ing the collisions, i.e. for lyol < d. 

The transformation equations of S-type are obtained by solving the equation (1.7) in 

the following form 
(2.3) 

%=Vy-’ (z,-+oSsinoz,)sin’y(~,-~~)~ (~,-~co~~~~)cosy(~~-t~)+~~~~~~, 
9 ‘= (~U‘+co/3sinexa) cosy(~,--z,) -y(f;~h-_cosWt,)sinyf~l--z,)- 

- 80 sinm, 

(2.4) 



Resonance behavior of a dynamical system with collisions 1121 

The value r1 > 7, and is the smallest root of the eqnation xt as = 0, or 

FIG. 2 

- 2, + COSOT~ = 0 (2.5) 

The initial points of the transformations S++ and S__ 

are located on the surfaces y = + d and y = - d, respectively. 

The transformation is applicable after a perfectly inelastic 

impact (R = 0) or after an impact with zero relative velocity 

if the inequality 

YoYa-’ > 0 (2.6) 

is satisfied. If this condition is not satisfied, the represent- 

ative point leaves the collision surface and a transforma- 

tion of T-type applies. 

3. Results of Ute solution of the problem. The equa- 

tions of the point transformations (2.1) to (2.3) and (2.51, 

completely determine the motion of the system if the valaas of the parameters and the 

initial position of the representative point in phase space are given. 
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FIG. 3 FIG. 4 
The study of the resonance behavior of the system under consideration was carried 

out on the ‘Razdan - 2’ digital computer of the Gorky Institute of Water Transport 

Engineers. A flow diagram of the solution is shown in Fig. 2, where 1 is the start; 

2 is the specification of the initial conditions and parameters; 3 is the determination of 

the type of the next transformation ; 4 is the calculation of the part of the phase trajectory; 

5 is the analysis of the solution; 6 is the printing of the results; and 7 is the stop. The 

initial position of the representative point waa.always given at the origin of coordinates. 

During the solution the maximum excursions X2 = 1% fTi)l max were stored and analyzed. 

Resonance behavior of the system for each parameter value was characterized by the 

magnitude X = Xim, . The continuation of a sequence of values Xi ceased when one of 

the following three conditions was fulfilled: (al none of the last N values of Xl turned out 

to be larger than the previously identified Ximax ; (b) the value of X exceeded some given 

magnitude X* ; (cl the time 7in the solution exceeded some given value 7+. 

In the solution N was taken as equal to 20, X l = 100, and T* = 100 (2rr/o). Naturally, 



1122 ‘U. I. Feigh 

these conditions on the dete~ination of 

values of the parameters producing large 

vibrations may reduce the critical ranges 

somewhat. Resonance curves for the system 

are shown in Figs. 3 to 5 in the form of 

families of relation X (0). We note some pe- 

culiarities of the forced vibrations of the 

dynamical system under investigation. 

1. If the parameters p, d, and R are fixed 

and only the frequency of the external force 

is changed, the behavior of the system is 

analogous to that of a system with a single 

degree of freedom. An increase of the rela- 

tive mass ~1 of the impacting body shifts the 

resonance region toward the lower frequencies 

Fig. 3). 

2. The nonlinearity of the system becomes specially apparent when the relative clear- 

ance d and the coefficient of restitution R are varied. The proportionality of the amplitude 

of forced vibrations to the amplitude of the applied force which holds in linear systems is 

taken into account in the formulation of the present solution by means of the relation (1.41, 

[= z (F/k), between the dimensional and the dimensionless coordinate. The presence of 

an additional dependence of X on d = D(k/F) (F’ lg. 4) shows that in the system with col- 

lisions the increase of the ‘amplitnde’ of the vibrations may greatly exceed the increase 

of the amplitude of the external force. 

3. The effect of the parameter R on the dissipative properties of the system is com- 

plicated, since the energy dissipated in an impact depends greatly on the character of the 

impact as well as on R. As is clear from Fig. 5, a decrease in R may lead to a sharp in- 

crease in the oscillations. 

4. The model which is considered here has been studied several times from the point 

of view of damping by collisions [l, 2 and 31. In the se studies a two-collision-per-cycle, 

symmetric, periodic motion was investigated, for which the acceleration damper turned out 

to be very effective. The investigation which has been carried out here shows that the 

effect of asing an acceleration damper may be just the opposite of what is derired if 

another motion is set up in the system. 
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